10 kW Grid-Connected PV System Cost and Environmental Analysis for Government Offices: Darbandikhan Technical Institute as a Case Study

Abstract
The Iraqi Kurdistan region has significant potential for implementing solar energy with an average annual rate of 5.245 kWh/m2. However, most of its energy supply currently comes from nonrenewable energy sources. With the continually increasing demand for energy, an alternative energy-generation technique is required. Among the various renewable energy resources, generating electricity directly from sunlight is the best option because it can be applied by the average household and is environmentally friendly. In this study, a cost and environmental analysis for a 10 kW grid-connected photovoltaic system is presented for a government building with the aim of reducing the load demand on the grid during weekdays and also to inject the generated power into the power grid during weekends. A simulation of the proposed PV system was generated by using Photovoltaic Geographic Information System software to estimate the system’s production performance. The software showed that the highest energy production was 1,660 kWh, which occurred in August; the total electricity production was 16,184 kWh over a 1-year period. The study also showed that the geographical location of Darbandikhan City is quite sufficient for generating electric power from solar energy. It further showed that it can reduce CO2 emissions by 356.60 tons during its lifetime when compared with a gasoline generator and by 131.38 tons when compared with that of a natural gas generator. The proposed system could serve as a good revenue source for the government by exporting the generated electricity to the grid while at the same time serving as motivation for households in the region; furthermore, this system can also be applied to other governmental offices in Kurdistan to generate some or all of its energy needs.