An Analysis of Rule Deletion Scheme in XCS on Reinforcement Learning Problem

Abstract
The XCS classifier system is an evolutionary rule-based learning technique powered by a Q-learning like learning mechanism. It employs a global deletion scheme to delete rules from all rules covering all state-action pairs. However, the optimality of this scheme remains unclear owing to the lack of intensive analysis. We here introduce two deletion schemes: 1) local deletion, which can be applied to a subset of rules covering each state (a match set), and 2) stronger local deletion, which can be applied to a more specific subset covering each state-action pair (an action set). The aim of this paper is to reveal how the above three deletion schemes affect the performance of XCS. Our analysis shows that the local deletion schemes promote the elimination of inaccurate rules compared with the global deletion scheme. However, the stronger local deletion scheme occasionally deletes a good rule. We further show that the two local deletion schemes greatly improve the performance of XCS on a set of noisy maze problems. Although the localization strength of the proposed deletion schemes may require consideration, they can be adequate for XCS rather than the original global deletion scheme.

This publication has 17 references indexed in Scilit: