Pemodelan Numerik Bangunan Peredam Energi Bendungan Pomalaa dengan Analisa Komputasi Fluida Dinamis

Abstract
Pada pengujian model fisik pelimpah Bendungan Pomalaa, peredam energi model seri 4 yang memiliki elevasi dasar +41,00 m telah mampu meredam energi aliran dengan baik pada debit Q100th, Q1000th, dan QPMF, namun perlu dicoba alternatif desain peredam energi yang lebih efektif dan efisien. Metode yang digunakan adalah simulasi model numerik berbasis Computational Fluid Dynamics (CFD), kemudian hasilnya akan diverifikasi dengan model fisik menggunakan Brier-Skill Score (BSS). Setelah itu, dilakukan alternatif desain berupa variasi elevasi dasar peredam energi, yaitu +42,00 m; +43,00 m; dan +44,00 m, kemudian dipilih model terbaik sebagai rekomendasi dari hasil simulasi. Hasil verifikasi model numerik menggunakan BSS menunjukkan bahwa model numerik cukup mampu untuk merepresentasikan model fisik. Hasil simulasi terbaik adalah peredam energi dengan elevasi dasar +42,00 m dengan efisiensi peredaman pada Q100th, Q1000th, dan QPMF berturut-turut sebesar 93,846%, 85,915%, dan 83,201%. Kemudian pada debit Q100th, Q1000th, dan QPMF di bagian hilir memiliki nilai bilangan Froude 0,770, 0,995, dan 1,472.In the physical model testing Pomalaa Dam spillway, the series 4 energy dissipator which has a base elevation of +41,00 m has been able to dissipate the flow energy well at the Q100y, Q1000y, and QPMF, but it is necessary to try alternative designs that more effective and efficient. The method used is a numerical model simulation using an application based on Computational Fluid Dynamics (CFD), then the result will be verified with physical model using Brier-Skill Score (BSS). After that, an alternative design was carried out in the form of a variation in the base elevation of the energy dissipator, that are +42,00 m; +43,00 m; and +44,00 m, then the best model is selected as a recommendation from the simulation result. The result of the verification of the numerical model using BSS show that numerical model is quite capable of representing the physical model. The best simulation result is an energy dissipator with a base elevation of +42,00 with efficiency of energy dissipation at Q100y, Q1000y, and QPMF respectively 93,846%, 85,915%, and 83,201%. Then Q100y, Q1000y, and QPMF at the downstream have Froude number value respectively 0,770, 0,995, and 1,472.