Abstract
Study of the reaction sequence by which Pseudomonas alcaligenes (P25X1) and derived mutants degrade m-cresol, 2,5-xylenol, and their catabolites has provided indirect evidence for the existence of two or more isofunctional enzymes at three different steps. Maleylpyruvate hydrolase activity appears to reside in two different proteins with different specificity ranges, one of which (MPH1) is expressed constitutively; the other (MPH11) is strictly inducible. Two gentisate 1,2-dioxygenase activities were found, one of which is constitutively expressed and possesses a broader specificity range than the other, which is inducible. From oxidation studies with intact cells, there appear to be two activities responsible for the 6-hydroxylation of 3-hydroxybenzoate, and again a broadly specific activity is present regardless of growth conditions; the other is inducible by 3-hydroxybenzoate. Three other enzyme activities are also detected in uninduced cells, viz., xylenol methylhydroxylase, benzylalcohol dehydrogenase, and benzaldehyde dehydrogenase. All apparently possess broad specificity. Fumarylpyruvate hydrolase was also detected but only in cells grown with m-cresol, 3-hydroxybenzoate, or gentisate. Mutants, derived either spontaneously or after treatment with mitomycin C, are described, certain of which have lost the ability to grow with m-cresol and 2,5-xylenol and some of which have also lost the ability to form the constitutive xylenol methylhydroxylase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase, 3-hydroxybenzoate 6-hydroxylase, and gentisate 1,2-dioxygenase. Such mutants, however, retain ability to synthesize inducibly a second 3-hydroxybenzoate 6-hydroxylase and gentisate 1,2-dioxygenase, as well as maleylpyruvate hydrolase (MPH11) and fumarylpyruvate hydrolase; MPH1 was still synthesized. These findings suggest the presence of a plasmid for 2,5-xylenol degradation which codes for synthesis of early degradative enzymes. Other enzymes, such as the second 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, maleylpyruvate hydrolase (MPH1 and MPH11), and fumarylpyruvate hydrolase, appear to be chromosomally encoded and, with the exception of MPH1, strictly inducible.