Generalized Thermal Flux Flow for Jeffrey Fluid with Fourier Law over an Infinite Plate

Abstract
The unsteady flow of Jeffrey fluid along with a vertical plate is studied in this paper. The equations of momentum, energy, and generalized Fourier’s law of thermal flux are transformed to non-dimensional form for the proper dimensionless parameters. The Prabhakar fractional operator is applied to acquire the fractional model using the constitutive equations. To obtain the generalized results for velocity and temperature distribution, Laplace transform is performed. The influences of fractional parameters α , β , γ , thermal Grashof number Gr , and non-dimensional Prandtl number Pr upon velocity and temperature distribution are presented graphically. The results are improved in the form of decay of energy and momentum equations, respectively. The new fractional parameter contains the Mittag-Leffler kernel with three fractional parameters which are responsible for better memory of the fluid properties rather than the exponential kernel appearing in the Caputo–Fabrizio fractional operator. The Prabhakar fractional operator has advantage over Caputo–Fabrizio in the real data fitting where needed.
Funding Information
  • King Khalid University (R.G.P-1/178/42)