Devising a conceptual method for generating cryptocompression codograms of images without loss of information quality

Abstract
Along with the widespread use of digital images, an urgent scientific and applied issue arose regarding the need to reduce the volume of video information provided it is confidential and reliable. To resolve this issue, cryptocompression coding methods could be used. However, there is no method that summarizes all processing steps. This paper reports the development of a conceptual method for the cryptocompression coding of images on a differentiated basis without loss of information quality. It involves a three-stage technology for the generation of cryptocompression codograms. The first two cascades provide for the generation of code structures for information components while ensuring their confidentiality and key elements as a service component. On the third cascade of processing, it is proposed to manage the confidentiality of the service component. The code values for the information components of nondeterministic length are derived out on the basis of a non-deterministic number of elements of the source video data in a reduced dynamic range. The generation of service data is proposed to be organized in blocks of initial images with a dimension of 16×16 elements. The method ensures a decrease in the volume of source images during the generation of cryptocompression codograms, by 1.14–1.58 times (12–37 %), depending on the degree of their saturation. This is 12.7‒23.4 % better than TIFF technology and is 9.6‒17.9 % better than PNG technology. The volume of the service component of cryptocompression codograms is 1.563 % of the volume of the source video data or no more than 2.5 % of the total code stream. That reduces the amount of data for encryption by up to 40 times compared to TIFF and PNG technologies. The devised method does not introduce errors into the data in the coding process and refers to methods without loss of information quality.