Near-Infrared Self-Powered Linearly Polarized Photodetection and Digital Incoherent Holography Using WSe2/ReSe2 van der Waals Heterostructure

Abstract
Polarization-sensitive photodetection has attracted considerable attention as an emerging technology for future optoelectronic applications such as three-dimensional (3D) imaging, quantum optics, and encryption. However, traditional photodetectors based on Si or III–V InGaAs semiconductors cannot directly detect polarized light without additional optical components. Herein, we demonstrate a self-powered linear-polarization-sensitive near-infrared (NIR) photodetector using a two-dimensional WSe2/ReSe2 van der Waals heterostructure. The WSe2/ReSe2 heterojunction photodiode with semivertical geometry exhibits excellent performance: an ideality factor of 1.67, a broad spectral photoresponse of 405–980 nm with a significant photovoltaic effect, outstanding linearity with a linear dynamic range wider than 100 dB, and rapid photoswitching behavior with a cutoff frequency up to 100 kHz. Strongly polarized excitonic transitions around the band edge in ReSe2 lead to significant 980 nm NIR linear-polarization-dependent photocurrent. This linear polarization sensitivity remains stable even after exposure to air for longer than five months. Furthermore, by leveraging the NIR (980 nm)-selective linear polarization detection of this photodiode under photovoltaic operation, we demonstrate digital incoherent holographic 3D imaging.
Funding Information
  • National Research Foundation of Korea (2017R1A5A1014862, 2020R1A6A3A01100165)
  • Ministry of Culture, Sports and Tourism (R2017060005, R2020040080)
  • Korea Institute of Science and Technology (2E31011, 2E31012)