Abstract
A structured population the individuals of which are divided into n age or typical groups x_1,…,x_n. is considered. We assume that at any time moment k, k = 0,1,2… the size of the population x(k) is determined by the normal autonomous system of difference equations x(k+1)=F(x(k)), where F(x)=col(f_1 (x),…,〖 f〗_n (x) ) are given vector functions with real non-negative components f_i (x), i=1,…n. We investigate the case when it is possible to influence the population size by means of harvesting. The model of the exploited population under discussion has the form x(k+1)=F((1-u(k) )x(k) ), where u(k)= (u_1 (k),…,u_n (k))∈〖[0; 1]〗^n is a control vector, which can be varied to achieve the best result of harvesting the resource. We assume that the cost of a conventional unit of each of n classes is constant and equals to C_i≥0, i=1,…,n. To determine the cost of the resource obtained as the result of harvesting, the discounted income function is introduced into consideration. It has the form H_α (u ̅,x(0))=∑_(j=0)^∞▒〖∑_(i=1)^n▒〖C_i x_i (j) u_i (j) e^(-αj) 〗,〗 where α>0 is the discount coefficient. The problem of constructing controls on finite and infinite time intervals at which the discounted income from the extraction of a renewable resource reaches the maximal value is solved. As a corollary, the results on the construction of the optimal harvesting mode for a homogeneous population are obtained (that is, for n = 1).