New Search

Advanced search
Export article
Open Access

On the Impact of the Degree of Fluorination on the ORR Limiting Processes within Iron Based Catalysts: A Model Study on Symmetrical Films of Barium Ferrate

Sciprofile linkStephan Wollstadt, Sciprofile linkOliver Clemens
Published: 3 June 2020
 by  MDPI
Materials , Volume 13; doi:10.3390/ma13112532

Abstract: In this study, symmetrical films of BaFeO2.67, BaFeO2.33F0.33 and BaFeO2F were synthesized and the oxygen uptake and conduction was investigated by high temperature impedance spectroscopy under an oxygen atmosphere. The data were analyzed on the basis of an impedance model designed for highly porous mixed ionic electronic conducting (MIEC) electrodes. Variable temperature X-ray diffraction experiments were utilized to estimate the stability window of the oxyfluoride compounds, which yielded a degradation temperature for BaFeO2.33F0.33 of 590 °C and a decomposition temperature for BaFeO2F of 710 °C. The impedance study revealed a significant change of the catalytic behavior in dependency of the fluorine content. BaFeO2.67 revealed a bulk-diffusion limited process, while BaFeO2.33F0.33 appeared to exhibit a fast bulk diffusion and a utilization region δ larger than the electrode thickness L (8 μm). In contrast, BaFeO2F showed very area specific resistances due to the lack of oxygen vacancies. The activation energy for the uptake and conduction process of oxygen was found to be 0.07/0.29 eV (temperature range-dependent), 0.33 eV and 0.67 eV for BaFeO2.67, BaFeO2.33F0.33 and BaFeO2F, respectively.
Keywords: impedance spectroscopy / Oxyfluorides / Barium Ferrate / Orr Catalysts / thin film fluorination

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Materials" .
References (57)
    Back to Top Top