Developing sulfur‐doped titanium oxide nanoparticles loaded chitosan/cellulose‐based proangiogenic dressings for chronic ulcer and burn wounds healing

Abstract
Development of biomaterials supporting angiogenesis are highly desired in medical applications. In current work, chitosan and cellulose were cross-linked by using triethyl orthoformate and loaded with sulfur-doped titanium oxide nanoparticles. A readily available and inexpensive titanium oxide was added as a potential proangiogenic agent based on our group findings and other reports on metal oxide nanoparticles activity to stimulate angiogenesis. A simple freeze gelation method led to the development of flexible, foldable, and porous membranes. To investigate the chemical characteristics of the synthesized membranes, Fourier-transform infrared spectroscopy was used. Scanning electron microscopy equipped with energy-dispersive X-ray microanalysis was employed for surface morphological investigations. The cross-linked membranes showed higher degree of swelling capacity compared to the same material with titania-loaded nanoparticles in vitro. The synthesized materials showed higher degree of degradation in H2O2 as compared to phosphate-buffered saline and lysozyme. Chorioallantoic membrane assay was done to investigate the angiogenic potential. Titanium oxide nanoparticles loaded membranes (CLHTS-5 wt%) exhibited the best degree of angiogenesis in comparison to the other tested materials. In CLHTS-5 wt% experimental group, a good level of attachment and ingrowth of several blood vessels was observed. Interestingly, the same tested group (CLHTS-5 wt%) had shown the increasing trend of cellular metabolic rate of the seeded cells from Day 0 to Day 7 in vitro. These findings were further confirmed by the decline in lactate dehydrogenase enzyme release which was monitored until 72 h, indicating the promising ability of this biomaterial in wound healing applications.