Sleep Spindle Features and Neurobehavioral Performance in Healthy School-Aged Children

Abstract
In adults, central fast-frequency sleep spindles are involved in learning and memory functions. The density of local spindles is higher than global spindles, emphasizing the importance of local plastic neural processes. In children, findings on the association of spindles with cognition are more variable. Hence, we aim to study whether the local spindles are also important for neurobehavioral performance in children. We studied the correlations between local (occurring in only one channel: Fp1, Fp2, C3, or C4), bilateral, and diffuse (occurring in all four channels) spindles and neurobehavioral performance in 17 healthy children (median age 9.6 years). Local spindles were not as frequent as bilateral spindles (P-values < 0.05). Central spindle types had significant correlations with sensorimotor and language functions (e.g., the density of bilateral central spindles correlated positively with the Object Assembly in NEPSY, r = 0.490). Interestingly, frontopolar spindles correlated with behavior (e.g., the more bilateral the frontopolar spindles, the less hyperactive the children, r = −0.618). In children, the local spindles, but also more widespread central spindles, seem to be involved in the cognitive processes. Based on our findings, it is important that ageadjusted frequency limits are used in studies evaluating the frequencies of spindles in children.