New Search

Export article
Open Access

Public opinion analysis of novel coronavirus from online data

Published: 1 December 2020
Journal of Safety Science and Resilience , Volume 1, pp 120-127; doi:10.1016/j.jnlssr.2020.08.002

Abstract: Novel coronavirus, now named COVID-19, has swept the world, which is regarded as ‘public enemy number one’ by WHO. In these months, the coronavirus has become a hot topic and led various public opinion. The traditional strategies for public opinion analyzing seldom take the entities and behaviors into consideration. Focusing on the high fluctuation of public opinion of novel coronavirus event, we propose a Key-Information-oriented Convolutional Neural Network (KINCNN) to analyze both relevant entities and behaviors in addition to public opinion trend on Chinese corpus. Firstly, we establish a knowledge set according to the characteristic of distribution in corpus of emotions, behaviors and entities. Secondly, we integrate the other prior knowledge to initialize the convolution kernel for better model performance. Thirdly, as COVID-19 event develops, the dominant public opinion trend is obtained by our approach. Furthermore, the relationship of dominant public opinion with entities and behaviors is established as well in this research.
Keywords: public opinion / Novel Coronavirus / Key-Information-oriented Convolutional Neural Network / Entities and Behaviors

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Safety Science and Resilience" .
Back to Top Top