A single injection of vitamin D3 improves insulin sensitivity and β-cell function but not muscle damage or the inflammatory and cardiovascular responses to an acute bout of resistance exercise in vitamin D-deficient resistance-trained males

Abstract
Vitamin D deficiency is now a recognised problem affecting multiple physiological functions. The aim of the present study was to evaluate the effect of a single dose of vitamin D3 injection on the inflammatory, muscular damage, metabolic and cardiovascular responses to an acute bout of resistance exercise (RE) in vitamin D-deficient resistance-trained males. Blood samples from fourteen vitamin D-deficient resistance-trained males were obtained during two separate trials: lower vitamin D (LVD) and higher vitamin D (HVD, after vitamin D3 injection). Metabolic, inflammatory, muscle damage and cardiovascular markers were evaluated at baseline, immediately and 1 h after RE. There were significant trial-by-time interactions for insulin and homeostatic model assessment of insulin resistance (HOMA-IR) which significantly (P < 0·05) declined for 1 h after RE in the HVD trial compared with the LVD trial. Homeostasis model assessment of β-cell function (HOMA-β) declines at 1 h post-RE in the HVD trial. There was also a time effect for blood sugar which significantly (P < 0·05) decreased and for creatine kinase, lactate dehydrogenase and IL-6 which increased significantly 1 h post-RE in both trials. There were no significant changes in other inflammatory and cardiovascular markers following both trials. A single injection of vitamin D3 improved insulin resistance and β-cell function following RE in previously vitamin D-deficient resistance-trained males. Conversely, the injection did not change muscle damage and the inflammatory response to acute RE. Intramuscular vitamin D replacement may have key implications for the promotion of glucose metabolism and lowering the risk of diabetes in vitamin D-deficient individuals.