Voltage and frequency control of standalone wind-driven self-excited reluctance generator using switching capacitors

Abstract
This paper presents a methodology for voltage and frequency (V–f) control of a standalone wind-driven self-excited reluctance generator (WDSERG). The methodology is based on proposing two different compensation configurations using two switching capacitors (short-shunt and long-shunt compensation) for (V–f) control. The dynamic and steady-state performances of the two configurations are discussed under different operating conditions: wind speeds, load currents and power factors. This analysis is done by developing a complete dynamic model of WDSERG including the excitation capacitors and load. Therefore, complete equivalent circuits are proposed. The values of capacitors are controlled by adjusting the duty cycle of H-bridge circuits with PI controllers. To validate the proposed configurations and their dynamic models and equivalent circuits, simulation results for a 1.5-kW standalone WDSERG and experimental results for 0.2 kW reluctance generator driven by a DC motor, emulating the wind turbine, are carried out. The results show a significant enhancement in voltage and frequency regulation with the selected optimal capacitances for each configuration; however, short-shunt compensation is the preferred configuration as it controls the output voltage and frequency with minimum values of capacitances and minimum required duty variation.

This publication has 36 references indexed in Scilit: