Canonical Transformations and the Radial Oscillator and Coulomb Problems

Abstract
In a previous paper a discussion was given of linear canonical transformations and their unitary representation. We wish to extend this analysis to nonlinear canonical transformations, particularly those that are relevant to physically interesting many‐body problems. As a first step in this direction we discuss the nonlinear canonical transformations associated with the radial oscillator and Coulomb problems in which the corresponding Hamiltonian has a centrifugal force of arbitrary strength. By embedding the radial oscillator problem in a higher dimensional configuration space, we obtain its dynamical group of canonical transformations as well as its unitary representation, from the Sp(2) group of linear transformations and its representation in the higher‐dimensional space. The results of the Coulomb problem can be derived from those of the oscillator with the help of the well‐known canonical transformation that maps the first problem on the second in two‐dimensional configuration space. Finally, we make use of these nonlinear canonical transformations, to derive the matrix elements of powers of r in the oscillator and Coulomb problems from a group theoretical standpoint.

This publication has 9 references indexed in Scilit: