Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes

Abstract
Purpose Polycyclic Aromatic Hydrocarbons (PAHs) have been identified as carcinogenic and endocrine disrupter compounds that cause Metabolic Syndrome (MetS). Oxidative stress can lead to carcinogenesis and MetS in exposed people. Therefore, the relationship between urinary metabolite of PAH (OH-PAHs) level and the oxidative stress biomarker (Malondialdehyde) effect as the mediator in increasing the risk of MetS due to PAH exposure and risk assessment was investigated in Shiraz, Iran. Methods The first morning void urinary and blood samples were obtained from participants and analyzed. Physical examinations and anthropometric measurements were performed on the day of sampling. An automatic biochemistry analyzer was used to measure the blood cells. The participants’ socio-demographic information was gathered using a questionnaire and direct interviews with participants. Results The MetS prevalence was 26%. Malondialdehyde could act as a mediator between exposure to 1-HydroxyPyrene and increase in fast blood sugar, exposure to 2-HydroxyNaphthalene and increase in systolic blood pressure and exposure to 2-HydroxyFluorene and increase in SBP. Hazard quotients varied from 0.009 to 14.92 in women, and from 0.005 to 8.43 for Fluorene and Naphthalene in men, respectively. The Hazard Indexes were greater than one meaning that the non-cancer health risk related to the PAH exposure could be identified in the participants. Conclusion Although oxidative stress has been suggested to lead to MetS and the high HI levels obtained in the current study, future researches are essential to achieve more reliable findings and monitoring the environmental influencing factors in PAH exposure.
Funding Information
  • Vice-Chancellor for Research, Shiraz University of Medical Sciences (19157)