Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models

Abstract
The novel SARS-CoV-2 virus, responsible for the dangerous pneumonia-type disease, COVID-19, has undoubtedly changed the world by killing at least 3,900,000 people as of June 2021 and compromising the health of millions across the globe. Though the vaccination process has started, in developing countries such as India, the process has not been fully developed. Thereby, a diagnosis of COVID-19 can restrict its spreading and level the pestilence curve. As the quickest indicative choice, a computerized identification framework ought to be carried out to hinder COVID-19 from spreading more. Meanwhile, Computed Tomography (CT) imaging reveals that the attributes of these images for COVID-19 infected patients vary from healthy patients with or without other respiratory diseases, such as pneumonia. This study aims to establish an effective COVID-19 prediction model through chest CT images using efficient transfer learning (TL) models. Initially, we used three standard deep learning (DL) models, namely, VGG-16, ResNet50, and Xception, for the prediction of COVID-19. After that, we proposed a mechanism to combine the above-mentioned pre-trained models for the overall improvement of the prediction capability of the system. The proposed model provides 98.79% classification accuracy and a high F1-score of 0.99 on the publicly available SARS-CoV-2 CT dataset. The model proposed in this study is effective for the accurate screening of COVID-19 CT scans and, hence, can be a promising supplementary diagnostic tool for the forefront clinical specialists.

This publication has 50 references indexed in Scilit: