Abstract
1,3,3-Trinitroazetedine (TNAZ) is a powerful but insensitive energetic compound having C-NO2 and N-NO2 groups attached to a four-membered backbone. Aluminum powders are often added to explosives in order to have enhanced blast effect, etc. In the present study, aluminized TNAZ system is modeled for 1-3 Al atom(s) per TNAZ molecule within the restriction of density functional theory at the levels of UB3LYP/6-311++G(d,p) and UB3LYP/cc-PVDZ. Certain structural, physical and quantum chemical properties are obtained and discussed. The considered properties are found to be highly dependent on the multiplicity (thus the number of Al atoms present) of the composite systems considered. Also, calculated IR and UV-VIS spectra of the composites have been presented.