The product of waist and neck circumference outperforms traditional anthropometric indices in identifying metabolic syndrome in Chinese adults with type 2 diabetes: a cross-sectional study

Abstract
Traditional anthropometric indices are used in diagnosing metabolic syndrome (MetS). This study aimed to propose a novel index, a product of waist and neck circumferences (PWNC), and compared its value with traditional anthropometric parameters in identifying the presence of MetS in Chinese adults with type 2 diabetes mellitus (T2DM). From September 2017 to June 2019, a total of 2017 Chinese adults with T2DM from the National Metabolic Management Center were included and categorized into a MetS group (1575 cases) and a non-MetS group (442 cases). Demographic and metabolic characteristics were compared between the two groups, and logistic regression analysis was performed for MetS. Body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), neck circumference (NC) and PWNC were assessed by constructing receiver operating characteristic (ROC) curves, and the area under the ROC curves was compared by DeLong’s test. Compared with the non-MetS group, men and women with MetS had higher blood pressure; higher levels of fasting plasma glucose, fasting insulin, and triglycerides (TGs); lower levels of high-density lipoprotein cholesterol (HDL-C); elevated homeostasis model assessment of insulin resistance (HOMA-IR); and higher BMI, WHR, WC, NC and PWNC (all P < 0.01). Logistic regression showed that PWNC, HDL-C, TGs, HOMA-IR, systolic blood pressure, hypertension and hypotensors were independent risk factors for MetS (all P < 0.01). PWNC, WC, NC, WHR and BMI displayed significant values in the ROC for MetS (all P < 0.01), while the area under the curve for PWNC was larger than that for traditional anthropometric parameters (WC, WHR and BMI) in both men and women (all P < 0.01). PWNC outperformed traditional anthropometric parameters in identifying the presence of MetS in Chinese adults with T2DM.
Funding Information
  • National Natural Science Foundation of China (81870610)