Goals in Nutrition Science 2015–2020

Abstract
With the definition of goals in Nutrition Science, we are taking a brave step and a leap of faith with regard to predicting the scope and direction of nutrition science over the next 5 years. The content of this editorial has been discussed, refined, and evaluated with great care by the Frontiers in Nutrition editorial board. We feel the topics described represent the key opportunities, but also the biggest challenges in our field. We took a clean-slate, bottom-up approach to identify and address these topics and present them in eight categories. For each category, the authors listed take responsibility, and deliberately therefore this document is a collection of thoughts from active minds, rather than a complete integration or consensus. At Frontiers in Nutrition, we are excited to develop and share a platform for this discussion. Healthy Nutrition for all – an ambition too important to be handled by detached interest groups. Johannes le Coutre, Field Chief Editor, Frontiers in Nutrition (Barbara Burlingame, Chor San H. Khoo, and Dietrich Knorr) To deliver successfully, nutrition research needs a bold dose of innovation. Moving forward from the Millennium Development Goals to the post-2015 sustainable development goals (SDG), global nutrition appears to require an improved model. Under current practices, feeding the exploding world population necessitates to close a gap of nearly 70% between the amount of food available today and the projected availability by 2050 (1). Today, globally, an estimated 805 million people are undernourished or food insecure (2), yet one out of four calories from food goes uneaten. Meanwhile, overweight and obesity affect approximately two billion people, including 42 million children under the age of 5. Human health notwithstanding environmental health is also at stake. Agriculture alone accounts for about 70% of our global water usage and 24% of our greenhouse gas emissions. As a result, our strategies to overcome issues of food sustainability, food waste, and food loss must be multifarious and include, at the very least: (i) Improving the global consumption of food. (ii) Increasing production efficiencies on existing agricultural land. (iii) Developing sustainable approaches that reduce the environmental impact of food production, and in particular greenhouse gas emissions. Certainly, the impact of agriculture on climate, ecosystems, and water will have to be reduced, while at the same time, we will need to ensure that it supports inclusive economic and social development (1). Systems science, the interdisciplinary field that explores the nature of complex systems, is perhaps the best research model we have for addressing the urgent needs of a precariously unhealthy planet. For better or for worse, nutrition imparts a quintessential challenge, straddling many sectors and disciplines. In the past, at times, the agenda for mainstream nutrition has been pushing sectoral lines of reasoning by implementing policies that leave long-standing problems unresolved, while disrupting other sectors in the process. Of course, nutrition is not alone in this, but the history of unintended consequence is long and discouraging (3, 4). Agriculture and health have been the mainstay sectors at the United Nations level, in government ministries, and in academic departments. Increasingly, nutrition is being recognized as an important pillar for the environmental sector, with biodiversity for food and nutrition acknowledged by the Convention on Biological Diversity (5), and the Commission on Genetic Resources for Food and Agriculture accepting whole diets, food, and nutrients for human nutrition as ecosystem services (6). For all their embracing of nutrition, these sectors often work at cross-purposes, providing many useful illustrations of policies and programs that undermine each other’s development efforts. We have policies and interventions in agriculture that contribute to diet-related chronic disease, environmental degradation, and food insecurity (4, 7); conversely, in the health sector we have policies and interventions that compromise agricultural development (8); and in the environmental sector that lead to micronutrient malnutrition (9). Agriculture in particular, while solving some of its own sector problems, has been associated with many of the environmental and human health crises we now face, which directly impact upon nutrition, including chemical contamination of food supplies, loss of agrobiodiversity, and severe environmental degradation (10). In spite of the clear need to develop innovation for the future, “systematic attempts to explore existing methods and to develop new technologies of more sustainable food production systems have so far been scarce” (11). Although this quote is from over 30 years ago, it still quite accurately describes the current situation regarding activities related to sustainable diets and sustainable food systems. A sustainable development lens with a systems science approach offers not only a new analytical model for nutrition, but also an ethical and inclusive framework. Within this framework, nutrition encompasses more than its traditional domains and takes on issues of climate change (12), biodiversity and ecosystems (13), water use/waste (14), food losses and waste (15, 16), sustainable forests and seas (17), chemical contamination of food and water supplies (18), environmental regulatory issues and food law, risk and risk/benefit assessments (19), and monitoring adherence to and compliance with a range of relevant treaties and signed declarations/commitments (13). With this mindset of sensitive, cross-sectoral resolve, tangible and specific solutions will envisage a holistic food chain integration taking into account a total life cycle assessment. Food and nutrition security must be an intrinsic component of any solution for food sustainability. Forthcoming strategies will also have to...