Nano Delivers Big: Designing Molecular Missiles for Cancer Therapeutics

Abstract
Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS), widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.