A Flux Controlled Memristor using 90nm Technology

Abstract
A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.

This publication has 17 references indexed in Scilit: