Abstract
Cadmium oxide (CdO) and potassium (K) doped CdO nanoparticles (NPs) were synthesized by the chemical co-precipitation method and were used as photocatalysts for the degradation of Eosin B dye. The X-ray diffraction results presented that the crystallite size of undoped CdO and K doped CdO NPs were 43.74 and 42.31 nm, respectively. The morphological study and percent composition of synthesized undoped CdO and K doped CdO NPs was done by scanning electron microscope and energy dispersive X-ray analysis. The formation of NPs was confirmed by Fourier transform infrared spectroscopy. The precursor decomposition to CdO after annealing at ∼500 °C was studied by thermogravimetric analysis. The undoped CdO and K doped CdO nanoparticles degraded about 80% and 90% of the dye, respectively, in 140 min. The maximum degradation efficiency of the dye was achieved at a pH of 4, dye initial concentration of 15 ppm, catalyst dose of 20 mg, and a temperature of 45 °C. The degradation efficiency observed for recovered undoped CdO and recovered doped CdO nanoparticles was found to be 63% and 77%, respectively.