Security-Aware Routing Protocol Based on Artificial Neural Network Algorithm and 6LoWPAN in the Internet of Things

Abstract
Today, with increasing information technology such as the Internet of Things (IoT) in human life, interconnection and routing protocols need to find optimal solution for safe data transformation with various smart devices. Therefore, it is necessary to provide an enhanced solution to address routing issues with respect to new interconnection methodologies such as the 6LoWPAN protocol. The artificial neural network (ANN) is based on the structure of intelligent systems as a branch of machine interference, has shown magnificent results in previous studies to optimize security-aware routing protocols. In addition, IoT devices generate large amounts of data with variety and accuracy. Therefore, higher performance and better data handling can be achieved when this technology incorporates data for sending and receiving nodes in the environment. Therefore, this study presents a security-aware routing mechanism for IoT technologies. In addition, a comparative analysis of the relationship between previous approaches discusses with quality of service (QoS) factors such as throughput and accuracy for improving routing mechanism. Experimental results show that the use of time-division multiple access (TDMA) method to schedule the sending and receiving of data and the use of the 6LoWPAN protocol when routing the sending and receiving of data can carry out attacks with high accuracy.