Development and validation of a triple-LED surgical loupe device for fluorescence-guided resections with 5-ALA

Abstract
Fluorescence-guided resections performed using 5-aminolevulinic acid (5-ALA) have been studied extensively using the BLUE400 system. The authors introduce a triple–light-emitting diode (LED) headlight/loupe device for visualizing fluorescence, and compare this to the BLUE400 gold standard in order to assure similar and not more or less sensitive protoporphyrin-IX visualization. The authors defined the spectral requirements for a triple-LED headlight/loupe device for reproducing the xenon-based BLUE400 module. The system consisted of a white LED (normal surgery), a 409-nm LED for excitation, a 450-nm LED for background illumination, and appropriate observation filters. The prototype’s excitation and emission spectra, illumination and detection intensities, and spot homogeneity were determined. The authors further performed a prospectively randomized and blinded study for fluorescence assessments of fresh, marginal, fluorescing and nonfluorescing tumor samples comparing the LED/loupe device with BLUE400 in patients with malignant glioma treated with 20 mg/kg body weight 5-ALA. Tumor samples were immediately assessed in turn, both with a Kinevo and with a novel triple-LED/loupe device by different surgeons. Seven triple-LED/loupe devices were analyzed. Illumination intensities in the 409- and 450-nm range were comparable to BLUE400, with high spot homogeneity. Fluorescence intensities measured distally to microscope oculars/loupes were 9.9-fold higher with the loupe device. For validation 26 patients with malignant gliomas with 240 biopsies were analyzed. With BLUE400 results as the reference, sensitivity for reproducing fluorescence findings was 100%, specificity was 95%, positive predictive value was 98%, negative predictive value was 100%, and accuracy was 95%. This study reached its primary aim, with agreement in 226 of 240 (94.2%, 95% CI 0.904–0.968). The authors observed only minor differences regarding spectra and illumination intensities during evaluation. Fluorescence intensities available to surgeons were 9.9-fold higher with the loupe device. Importantly, the independent perception of fluorescence achieved using the new system and BLUE400 was statistically equivalent. The authors believe the triple-LED/loupe device to be a useful and safe option for surgeons who prefer loupes to the microscope for resections in appropriate patients. Fluorescence-guided resections performed using 5-aminolevulinic acid (5-ALA) have been studied extensively using the BLUE400 system. The authors introduce a triple–light-emitting diode (LED) headlight/loupe device for visualizing fluorescence, and compare this to the BLUE400 gold standard in order to assure similar and not more or less sensitive protoporphyrin-IX visualization. The authors defined the spectral requirements for a triple-LED headlight/loupe device for reproducing the xenon-based BLUE400 module. The system consisted of a white LED (normal surgery), a 409-nm LED for excitation, a 450-nm LED for background illumination, and appropriate observation filters. The prototype’s excitation and emission spectra, illumination and detection intensities, and spot homogeneity were determined. The authors further performed a prospectively randomized and blinded study for fluorescence assessments of fresh, marginal, fluorescing and nonfluorescing tumor samples comparing the LED/loupe device with BLUE400 in patients with malignant glioma treated with 20 mg/kg body weight 5-ALA. Tumor samples were immediately assessed in turn, both with a Kinevo and with a novel triple-LED/loupe device by different surgeons. Seven triple-LED/loupe devices were analyzed. Illumination intensities in the 409- and 450-nm range were comparable to BLUE400, with high spot homogeneity. Fluorescence intensities measured distally to microscope oculars/loupes were 9.9-fold higher with the loupe device. For validation 26 patients with malignant gliomas with 240 biopsies were analyzed. With BLUE400 results as the reference, sensitivity for reproducing fluorescence findings was 100%, specificity was 95%, positive predictive value was 98%, negative predictive value was 100%, and accuracy was 95%. This study reached its primary aim, with agreement in 226 of 240 (94.2%, 95% CI 0.904–0.968). The authors observed only minor differences regarding spectra and illumination intensities during evaluation. Fluorescence intensities available to surgeons were 9.9-fold higher with the loupe device. Importantly, the independent perception of fluorescence achieved using the new system and BLUE400 was statistically equivalent. The authors believe the triple-LED/loupe device to be a useful and safe option for surgeons who prefer loupes to the microscope for resections in appropriate patients.

This publication has 24 references indexed in Scilit: