Genesis of the Tangshang Au Deposit in Southeast Yunnan Province, China: Constraints from In Situ Chemical and S-Sr Isotope Analyses

Abstract
The Yunnan–Guizhou–Guangxi district (also known as the Dian–Qian–Gui “Golden Triangle”) in southwestern China contains numerous Carlin-type Au deposits (CTGDs). However, the sources of Au and Au-bearing fluids in these deposits remain controversial. The Tangshang Au deposit is a middle-sized CTGD in southeastern Yunnan Province. This study involved in situ chemical and S isotope analyses of sulfides and in situ trace elemental and Sr isotope analyses of ore-related calcite; these data were used to trace the sources of fluids and Au, as well as the genesis of this deposit. Four pyrite types (Py1, Py2, Py3, and Py4) and two arsenopyrite types (Apy1 and Apy2) were identified based on their textural characteristics. It was found that Py1 contains relatively lower Au, Sb, Cu, and Tl contents than those of Py2, Py3, and Py4. Py1 is wrapped by rim-Py2 and Py3, which indicates an early-ore-stage genesis. The Carlin-type mineralization elements are elevated in the pyrites (Au = 3.04–38.1 ppm; As = 40,932–65,833 ppm; Tl = 0 to 3.3 ppm; Sb = 1.2 to 343 ppm; and Cu = 10 to 102 ppm), and the average Co/Ni ratio is 0.54. Additionally, Au has a positive correlation with Tl and Cu. The high concentrations of As and Au in all types of pyrite indicate that the ore-forming fluids are rich in both elements. The sulfides in the ores were shown to produce similar S isotope ratios, which are obviously higher than the S isotope value of sulfide (~0‰) in Emeishan basalt; therefore, the integration of these and elemental composition data indicated that all pyrites (Py1, Py2, Py3, and Py4) form during the ore stage. These results also demonstrate that the δ34S values of the Au-bearing fluids are higher than those of basalt wall rocks. The flat chondrite-normalized REEs pattern and positive Eu anomaly of the calcite were similar to those obtained from Emeishan basalt, which suggests a reducing characteristic of hydrothermal fluids. The 87Sr/86Sr ratios (0.70557–0.70622) of calcite were also comparable to the range obtained from Emeishan basalt. Some slightly higher 87Sr/86Sr ratios, which ranged between those obtained from Emeishan basalt and limestone from the Maokou Formation, indicated that the Sr isotope ratios of the Au-bearing fluids are higher than those of Emeishan basalt. Based on data generated in the present study and the regional geology of this area, a genetic model involving a metamorphic fluid system was proposed for the Tangshang gold deposit, and a gold mineralization event related to metamorphic fluid in the south of the Dian–Qian–Gui “Golden Triangle” was indicated.
Funding Information
  • Jianzhong Liu (U1812402, Qian Ke He Ping Tai Ren Cai CXTD [2021]007, 2017YFC0601500, 41962008, YJSCXJH[2020]095)