Analytical and Numerical Analysis of the Strength Performance of a Novel Ship Construction Profile

Abstract
Construction profiles in different shapes such as bulb flats, tees, channels, and angles are widely used in the shipbuilding industry. During the ship construction process, these conventional profiles are joined to the plates as stiffeners and are dimensioned according to class rules. This article investigates the structural performance of a novel construction profile, the so-called TP profile, that can be used in the hull construction of ships and of which form is inspired by the human bone geometry. The cross-sectional area and the weight of the TP profile are designed to be equal to those of the conventional HP profile and commercial T profile. Strength performances of these profiles are compared via analytical and numerical analyses. The plate joint profiles are modeled under various loading and boundary conditions and the finite element method is used for the calculation of stress components and deflections. The TP profile has a high potential to be used in the shipbuilding industry.