Girder Longitudinal Movement and Its Factors of Suspension Bridge under Vehicle Load

Abstract
Vehicle load may not only cause vertical deformation and vibration of suspension bridge but also lead to longitudinal deformation and vibration. And the longitudinal behavior is closely related to the durability of the girder end devices and the bending fatigue failure of suspenders. In this study, the longitudinal deformation behavior and longitudinal vibration of suspension bridge under vehicles, as well as the related influencing factors, are investigated. The underlying mechanism of girder longitudinal movement under the moving vehicles is revealed. Based on the simplified vehicle model of vertical concentrated force, the characteristics of main cable deformation and girder longitudinal displacement under vertical loads are analyzed first. Then, the longitudinal motion equation of the girder under vertical moving loads is derived. Finally, a single long-span suspension bridge is employed in the case study, and the girder longitudinal response and influencing factors are investigated based on both numerical simulation and field monitoring. Results indicate that the asymmetric vertical load leads to cable longitudinal deflection owing to the geometrically nonlinear characteristic of the main cable, leading to longitudinal movement of the girder. The results of field monitoring and numerical simulation indicate that the girder moves quasi-statically and reciprocates longitudinally with centimeter amplitude under normal operational loads.
Funding Information
  • Natural Science Foundation of Hunan Province (2021JJ50143, 2019TJ-Y08)