Evaluasi Stabilitas Hasil Jagung Hibrida Menggunakan Metode Genotype and Genotype by Environment Interaction Biplot (GGE BIPLOT)

Abstract
Visualization of GGE biplot analyses was able to explain the genotype by environment interaction. This research was aimed to determine the yield stability of promising experimental maize hybrids in eight locations based GGE biplot method. Ten promising experimental maize hybrids and two commercial hybrid varieties as check, namely: HBSTK01, HBSTK03, HBSTK05, HBSTK06, HBSTK07, HBSTK08, HBSTK09, HBSTK10, HBSTK11, HBSTK13 and Bima 16 and Pertiwi 3 were evaluated in eight locations, ie. Bangka (Bangka Belitung), Probolinggo (East Java), Minahasa Utara (North Sulawesi), Donggala (Central Sulawesi), Soppeng, South Sulawesi, Gowa (South Sulawesi, Konawe (Southeast Sulawesi)and Lombok Barat (West Nusa Tenggara) from May to October 2013. The treatments were arranged in a randomized complete block design (RCBD) with 3 replications. Variable measured was grain yield. Analysis of variance was performed for data from each study site, to determine the performance of each genotype at each location. Yield stability analysis was performed by GGE biplot method using PB tools software. Results showed that genotype H9 (HBSTK11) had the highest biological stability with grain yield of 10.37 t/ha, higer than the overall mean yield. The best hybrid with the highest yield and good stability was hybrid H6 (HBSTK08) of 11.08 t/ha. This experimental hybrid is considered potential to be released as new hybrid variety. North Minahasa is considered the most suitable location for testing, whereas Konawe and West Lombok are least suitable, compared with the other locations.