Abstract
The rock masses that occur in nature are damaged and unstable due to the impact of rock burst, coal and gas outbursts, and other human mining activities, posing a major threat to human life and safety. In the light of the early warning of the danger of the loaded rock mass, this paper adopts acoustic emission (AE) device to analyze the AE signal characteristics and damage laws of the loaded rock under different stress levels. Then, based on the AE signal characteristics of the loaded rock, data mining technology is used to construct a model to predict the failure and instability of the loaded rock mass and, finally, verify the reliability of the prediction model based on data mining. The results show that the AE signal characteristics of red sandstone under uniaxial load are related to the magnitude of the bearing stress. Before the plastic deformation stage, the AE energy and the cumulative count per second are both small. After the loaded rock enters the plastic deformation stage, the AE energy and the cumulative count per second both increase sharply. After the AE energy is greater than 500 mVms and the cumulative count per second is greater than 150, the loaded rock mass will issue an early warning signal. The research results can provide a reference value for the safe production of the project site and the dangerous early warning of the loaded rock mass.
Funding Information
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (SKLMRDPC20ZZ06, gxyq2020013)