Abstract
Big earthquakes often excite the acoustic resonance between the earth’s surface and the lower atmosphere. The perturbations can propagate upward into the ionosphere and trigger ionospheric anomalies detected by dual-frequency GPS observations, but coseismic ionospheric disturbance (CID) directivity and mechanism are not clear. In this paper, the ionospheric response to the Mw = 7.9 Alaska earthquake on 23 January 2018 is investigated from about 100 continuous GPS stations near the epicenter. The fourth-order zero-phase Butterworth band-pass filter with cutoffs of 2.2 mHz and 8 mHz is applied to obtain the ionospheric disturbances. Results show that the CIDs with an amplitude of up to 0.06 total electron content units (TECU) are detected about 10 min after the Alaska earthquake. The CIDs are as a result of the upward propagation acoustic waves triggered by the Rayleigh wave. The propagation velocities of TEC disturbances are around 2.6 km/s, which agree well with the wave propagation speed of 2.7 km/s detected by the bottom pressure records. Furthermore, the ionospheric disturbances following the 2018 Mw = 7.9 Alaska earthquake are inhomogeneous and directional which is rarely discussed. The magnitude of ionospheric disturbances in the western part of the epicenter is more obvious than in the eastern part. This phenomenon also corresponds to the data obtained from the seismographs and bottom pressure records (BPRs) at the eastern and western side of the epicenter.