Alteration Mapping for Lead-Zinc-Barium Mineralization in Parts of the Southern Benue Trough, Nigeria, Using ASTER Multispectral Data

Abstract
The lead-zinc-barium deposits of the southern Benue Trough, Nigeria belong to a suite of clastic dominated fracture filling hydrothermal vein deposits. The alteration types and spread are poorly known yet required to aid exploration. Band ratio composites (BRC), Principal Component Analysis (PCA), and Minimum Noise Fraction (MNF) were applied to a full scene Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery covering the study area. Spectral analysis of sulphide minerals known in the area led to the development of the (B1+B3)/2 ratio, which provided a highly effective sulphide discriminant. PCA and MNF bands with high eigenvectors in the absorption features of target minerals qualified as colour composite candidates for alteration mapping. This study demonstrated the effectiveness of combining the BRC, PCA and MNF techniques in the discrimination of ferric-ferrous/sulphide and silica alteration zones in the Southern Benue Trough.