Heat-Resistant Properties of a SiO2-Coated PET Film Prepared by Irradiating a Polysilazane-Coated Film with Excimer Light

Abstract
Flexible electronics have been recently paid much attention. A flexible substrate (Organic resin film) is indispensable component for flexible devices. Though PET film is low-cost organic film, low heat-resistance of PET film limits its application as a flexible device substrate. We have developed heat-resistant PET which does not deteriorate even at 190°C heat treatment for one hour. An excimer light was irradiated onto a polysi-lazane (PHPS: perhydropolysilane)-coated film to form a dense silicon-dioxide (SiO2) layer on a PET film, and the heat-resistance property of the formed film was examined. Changes of surface state and cross-sectional structure of the formed film due to heat treatment were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compared to normal PET, which is deteriorated and whitened by heat treatment of about 110°C - 120°C, the SiO2-coated PET film maintains transparency and does not deteriorate after heat treatment at 180°C - 190°C for one hour. This high heat resistance is due to a dense SiO2 film formed on the surface that prevents surface precipitation and crystallization of low-molecular-weight oligomers (which are the cause of thermal degradation of PET). It is expected that enhancing the heat resistance of PET—which has high versatility and low cost—to about 180°C to 190°C will allow SiO2-film-coated PET to be developed as a film substrate for flexible devices.

This publication has 1 reference indexed in Scilit: