Mechanical Properties of Injection Molded Poly(lactic) Acid—Luffa Fiber Composites

Abstract
The influence of cellulose nano fibers extracted from the fruit of luffa cylindrica (LC) on the tensile, flexural and impact properties of composite materials using poly lactic acid (PLA) processed by micro compounding and injection molding was studied. Preliminary results suggested promising mechanical properties. The impact strength, tensile strength and flexural strength of the composites increased with incorporation of very low content of LC fiber up to 2 wt%. But when the wt of LC fiber in the composite increased (5 wt% and 10 wt%), mechanical strength of the composites reduced probably due to agglomeration of cellulose fibers. However, modulus of composites was enhanced with increase in wt of fiber content in the composites. Before reinforcement, the LC fibers were modified with calcium phosphate in order to explore the possibilities of using these composites in biomedical industries. The novelty of this work is that there is no use of compatiblizer and coupling agent during the processing so that the cost of processing is reduced.