Development of statistical modeling of the pipelines' reliability projections of the main heat networks, according to the period of operation and diameter

Abstract
Using the method of statistical modeling of pipeline reliability, the statistical model for forecasting the dependence of the failure parameter of pipelines of main heating networks on the service life and diameter was developed and analyzed. This method includes two techniques. The first allows to obtain predictive dependences of pipeline reliability indicators for systems that include sections of different diameters with different service life periods and actual data on damage over several years. The second increases the correctness of the obtained dependences by optimizing the service life step in the study of damage to heat pipes. As a result of the study, the dependence of the reliability of main pipelines on the service life and diameter was established. The condition and forecast values of the specified indicator of reliability of main heat pipelines, and also dynamics and range of its changes are defined. The average value of the failure rate parameter increases from 0.23 1/km year (diameter 300 mm) to 0.62 1/km year (diameter 800 mm), which is 2.7 times larger than the pipes with the diameter 300 mm. The multiplicity of changes in the value of the parameter of the flow of failures was also established in accordance with the change in the diameter of the pipelines. According to the developed statistical model the dependence for calculation of the forecast of quantity of damages of the main heat pipelines according to their service life, diameter and length is established. This will increase the reliability of heating systems and effectively plan the cost of material, technical and labor resources. The given method can be used to assess the forecast of the reliability of pipelines, respectively, of their diameters for other engineering systems and networks