Universal Access to Two‐Dimensional Mesoporous Heterostructures by Micelle‐Directed Interfacial Assembly

Abstract
Two-dimensional (2D) mesoporous heterostructures combining ultrathin nanosheet morphology, periodic porous surface structures, and diverse hybrid compositions have become increasingly important for renewable energy storage and electronics. However, it remains a great challenge to develop a universal method to prepare 2D mesoporous heterostructures. Herein, we report a composite-micelle-directed interfacial assembly method to synthesize heterostructures of an ultrathin 2D material covered with mesoporous monolayers assembled on both sides. To demonstrate the concept, we first fabricated a new sandwichlike carbon@MXene@carbon mesoporous heterostructure through the self-assembly of exfoliated MXene nanosheets and block copolymer F127/melamine-formaldehyde resin composite micelles and subsequent thermal treatment. Finally, we demonstrate that the carbon@MXene@carbon mesoporous heterostructured nanosheets manifest remarkably enhanced electrochemical performance as a cathode material for lithium–sulfur batteries.
Funding Information
  • Japan Society for the Promotion of Science (18F18038, 18F18764)
  • Natural Science Foundation of Jiangsu Province (BK20170778)
  • Australian Research Council (FT150100479)