DFT analysis and demonstration of enhanced clamped Electro-Optic tensor by strain engineering in PZT

Preprint
Abstract
We report $\approx$400\% enhancement in PZT Pockels coefficient on DFT simulation of lattice strain due to phonon mode softening.The simulation showed a relation between the rumpling and the Pockels coefficient divergence that happens at -8\% and 25\% strain developed in PZT film.The simulation was verified experimentally by RF sputter deposited PZT film on Pt/SiO$_2$/Si layer.The strain developed in PZT varied from -0.04\% for film annealed at 530\degree C to -0.21\% for 600\degree C annealing temperature.The strain was insensitive to RF power with a value of -0.13\% for power varying between 70-130 W. Pockels coefficient enhancement was experimentally confirmed by Si Mach Zehnder interferometer loaded with PZT and probed with the co-planar electrode.An enhancement of $\approx$300\% in Pockels coefficient was observed from 2-8 pm/V with strain increasing from -0.04\% to -0.21\%. To the best of our knowledge, this is the first time study and demonstration of strain engineering on Pockels coefficient of PZT using DFT simulation, film deposition, and photonic device fabrication.