New Search

Export article
Open Access

Codon usage bias and dinucleotide preference in 29 Drosophila species

Prajakta P Kokate, ,
G3 Genes|Genomes|Genetics ; doi:10.1093/g3journal/jkab191

Abstract: Codon usage bias, where certain codons are used more frequently than their synonymous counterparts, is an interesting phenomenon influenced by three evolutionary forces: mutation, selection, and genetic drift. To better understand how these evolutionary forces affect codon usage bias, an extensive study to detect how codon usage patterns change across species is required. This study investigated 668 single-copy orthologous genes independently in 29 Drosophila species to determine how the codon usage patterns change with phylogenetic distance. We found a strong correlation between phylogenetic distance and codon usage bias and observed striking differences in codon preferences between the two subgenera Drosophila and Sophophora. As compared to the subgenus Sophophora, species of the subgenus Drosophila showed reduced codon usage bias and a reduced preference specifically for codons ending with C, except for codons with G in the second position. We found that codon usage patterns in all species were influenced by the nucleotides in the codon’s 2nd and 3rd positions rather than the biochemical properties of the amino acids encoded. We detected a concordance between preferred codons and preferred dinucleotides (at positions 2 and 3 of codons). Furthermore, we observed an association between speciation, codon preferences, and dinucleotide preferences. Our study provides the foundation to understand how selection acts on dinucleotides to influence codon usage bias.
Keywords: Codon usage bias / Drosophila / Evolution / Dinucleotide preference / Synonymous codons

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "G3 Genes|Genomes|Genetics" .
References (39)
    Back to Top Top