New Search

Export article

An Effective Collaborative User Model Using Hybrid Clustering Recommendation Methods

, Azlinah Mohamed, Madhavan A/l Balan Nair, Sayed Mojtaba Tabibian
Ingénierie des systèmes d information , Volume 26, pp 151-158; doi:10.18280/isi.260202

Abstract: Collaborative Filtering (CF) has been known as the most successful recommendation technique in which recommendations are made based on the past rating records from like-minded users. Significant growth of users and items have negatively affected the efficiency of CF and pose key issues related to computational aspects and the quality of recommendation such as high dimensionality and data sparsity. In this study, a hybrid method was proposed and was capable to solve the mentioned problems using a neighborhood selection process for each user through two clustering algorithms which were item-based k-means clustering and user-based Fuzzy Clustering. Item-based k-means clustering was applied because of its advantages in computational time and hence it is able to address the high dimensionality issues. To create user groups and find the correlation between users, we employed the user-based Fuzzy Clustering and it has not yet been used in user-based CF clustering. This clustering can calculate the degree of membership among users into set of clustered items. Furthermore, a new similarity metric was designed to compute the similarity value among users with affecting the output of user-based Fuzzy Clustering. This metric is an alternative to the basic similarity metrics in CF and it has been proven to provide high-quality recommendations and a noticeable improvement on the accuracy of recommendations to the users. The proposed method has been evaluated using two benchmark datasets, MovieLens and LastFM in order to make a comparison with the existing recommendation methods.
Keywords: user / quality recommendations / method was proposed / recommendation methods / Model / Fuzzy / items / clustering

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Ingénierie des systèmes d information" .
Back to Top Top