Abstract
Any feature matching algorithm needs to be robust, producing few false positives but also needs to be invariant to changes in rotation, illumination and scale. Several improvements are proposed to a previously published Phase Correlation based algorithm, which operates on local disc areas, using the Log Polar Transform to sample the disc neighborhood and the FFT to obtain the phase. It will be shown that the matching can be done in the frequency domain directly, using the Chi-squared distance, instead of computing the cross power spectrum. Moreover, it will be shown how combining these methods yields an algorithm that sorts out a majority of the false positives. The need for a peak to sub lobe ratio computation in order to cope with sub pixel accuracy will be discussed as well as how the FFT of the periodic component can enhance the matching. The result is a robust local feature matcher that is able to cope with rotational, illumination and scale differences to a certain degree.

This publication has 26 references indexed in Scilit: