Structural Properties of Mg2(Si,Ge,Sn)-Based Thermoelectric Materials Prepared by Induction Melting Method

Abstract
We report on preparation of Mg2(Si,Ge,Sn)-based thermoelectric materials by a direct induction melting method in Al2O3 crucible. A 40 g ingot of Mg2Si0.8Sn0.1Ge0.1 was prepared after addition to the batch 10 wt% of Mg excess. Evolution of crystal structure of the induction melted sample upon annealing and spark plasma sintering (SPS) was tracked by room-temperature X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. An evidence for the formation of Mg2(Si,Ge,Sn) solid solution was obtained from the crystal lattice parameter of this phase which was found to be larger than that of undoped Mg2Si. XRD and SEM indicated that alongside with the main phase of the Mg2(Si,Ge,Sn) solid solution, an impurity phase of Mg2Sn exists in the sample. Amount of the Mg2Sn impurity phase is significantly reduced in spark plasma sintered sample.