Reconfigurable Multivalue Logic Functions of a Silicon Ellipsoidal Quantum-Dot Transistor Operating at Room Temperature

Abstract
Reconfigurable multivalue logic functions, which can perform the versatile arithmetic computation of weighted electronic data information, are demonstrated at room temperature on an all-around-gate silicon ellipsoidal quantum-dot transistor. The large single-hole transport energy of the silicon quantum ellipsoid allows the stable M-shaped Coulomb blockade oscillation characteristics at room temperature, and the all-around-gate structure of the fabricated transistor enables us to perform the precise self-control of the energetic Coulomb blockade conditions by changing the applied bias voltage. Such a self-controllability of the M-shaped Coulomb blockade oscillation characteristics provides a great advantage to choose multiple operation points for the reconfigurable multivalue logic functions. Consequently, the weighted data states (e.g., tri-value and quattro-value) are effectively demonstrated by utilizing only the device physics in the all-around-gate silicon ellipsoidal quantum-dot transistor. These findings are of great benefit for the practical application of the silicon quantum device at an elevated temperature for future nanoelectronic information technology.
Funding Information
  • National Research Foundation of Korea (2016R1A6A1A03012877, 2017R1A2B4004281, 2019R1A2C1085448)