Abstract
The index of ozone anomaly (IOA) has been proposed to detect changes in tropospheric ozone associated with strong earthquakes. The tropospheric ozone prior and after the 2008 Wenchuan earthquake has been analyzed using IOA. Atmospheric infrared sounder ozone volume mixing ratio (O3 VMR) at different pressure levels (600, 500, 400, 300, 200 hPa) for an 18-year period 2003-2020 has been considered to identify the unique behavior associated with the strong earthquakes. Our results show distinct enhancement in tropospheric ozone occurred 5 d (7 May 2008) prior to the main event and distributed along the Longmenshan fault zone. An enhancement in IOA has also been observed around the time of the 2013 Lushan and 2017 Jiuzhaigou earthquakes, but with the different emergence time, which indicates that the unusual behavior of tropospheric ozone depends on the tectonic and geological environment, focal mechanism, focal depth, meteorological conditions, and other factors. The location of increased tropospheric ozone indicates the epicenter of earthquakes. The magnitude of earthquake could be one of the important factors affecting the appearance of the anomalous tropospheric ozone. The possible mechanism for the increased tropospheric ozone associated with strong earthquakes is discussed in this article. The quasi-synchronous changes of tropospheric ozone and other parameters in the lithosphere/atmosphere/ionosphere have been found by combining with the other published results related to the Wenchuan earthquake, which show the existence of coupling during the earthquake preparation phase associated with the lithosphere-atmosphere-ionosphere coupling.
Funding Information
  • National Natural Science Foundation of China (42074082, 41604062, 41774111)
  • APSCO Earthquake Research Project Phase II: Integrating Satellite and Ground Observations for Earthquake Signatures and Precursors