Effect of Cu2+ substitution on structure, morphology, and magnetic properties of Mg-Zn spinel ferrite

Abstract
Objective: To prepare Cu doped Mg0:5􀀀xCuxZn0:5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15,0.2 and 0.25) spinel ferrites materials and study the structure, morphology, and magnetic properties. Methods: Cu doped Mg-Zn spinel ferrites are magnetic and highly resistive materials. They were synthesized by the method of solid-state reaction and characterized by x-ray diffraction (XRD), field effect scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), andvibrating sample magnetometer (VSM) for their structural, compositional,morphological, functional properties. They are with spinel structure under Fd-3m space group. Their crystallite size was 44.58 nm to 31.02 nm range after calcined at 1000 oC. Their spinel structure was confirmed with FT-IR analysis, whose absorption bands were 598.84 – 580.40 cm-1 and 405.35 - 402.15 cm-1 range for higher and lower frequency, respectively. The value of coercivity is in the range 146.33 - 9.427 Oe with the variation of content. The lower values of the coercivity indicated the soft ferrimagnetic nature of the synthesized materials. Findings/ Application: Substitution of non-magnetic Cu2+ ions strongly influenced the structural and magnetic properties of magnesium ferrites. Keywords: Cu doped MgZn ferrite; XRD; FTIR; FESEM; Coercivity