New Search

Export article

WinoGrande

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

Abstract: Commonsense reasoning remains a major challenge in AI, and yet, recent progresses on benchmarks may seem to suggest otherwise. In particular, the recent neural language models have reported above 90% accuracy on the Winograd Schema Challenge (WSC), a commonsense benchmark originally designed to be unsolvable for statistical models that rely simply on word associations. This raises an important question---whether these models have truly acquired robust commonsense capabilities or they rely on spurious biases in the dataset that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) large-scale crowdsourcing, followed by (2) systematic bias reduction using a novel AFLITE algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. Our experiments demonstrate that state-of-the-art models achieve considerably lower accuracy (59.4%-79.1%) on WINOGRANDE compared to humans (94%), confirming that the high performance on the original WSC was inflated by spurious biases in the dataset. Furthermore, we report new state-of-the-art results on five related benchmarks with emphasis on their dual implications. On the one hand, they demonstrate the effectiveness of WINOGRANDE when used as a resource for transfer learning. On the other hand, the high performance on all these benchmarks suggests the extent to which spurious biases are prevalent in all such datasets, which motivates further research on algorithmic bias reduction.
Keywords: models / neural / WinoGrande / commonsense / WSC / spurious / benchmarks may seem to suggest / reported / suggests

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Communications of the ACM" .
References (3)
    Back to Top Top