Establishment of Babesia bovis In Vitro Culture Using Medium Free of Animal Products

Abstract
Babesia bovis, an etiological agent of bovine babesiosis, causes a significant burden to the cattle industry worldwide. The most efficient method to mitigate bovine babesiosis is a live vaccine produced by serial passage in splenectomized cattle. However, there are several concerns regarding live vaccine production, including variation between batches and the use of many animals. In this study, we report a B. bovis-SF strain continuously cultured in a medium free of components of animal origin enriched with a chemically defined lipid mixture (CD lipid mixture) and the use of a perfusion bioreactor to harvest a large amount of B. bovis. Six culture media were compared, including VP-SFM, CD-CHO, CD-Hydrolyzed, CD-CHO, SFM, and ADMEM/F12. We found that the VP-SFM medium performed the best for B. bovis growth, with a maximum percentage of parasitized erythrocytes (PPE) of 8.6%. The effect of six dilutions of a commercial mixture of CD lipids added to VP-SFM showed that the CD lipid mixture at a dilution of 1:100 had the best B. bovis growth curve, with a maximum PPE of 13.9%. Propagation of the in vitro B. bovis culture was scaled up in a perfusion bioreactor using VP-SFM with a CD lipid mixture, and the PPE reached over 32%. The continuous in vitro B. bovis culture in a medium free of animal origin components could potentially reduce and replace the use of animals to produce a reagent for diagnostics and live vaccines to control bovine babesiosis.
Funding Information
  • U.S. Department of Agriculture (2090-32000-039-00D)
  • Agricultural Research Service (2090-32000-039-19-A)
  • Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (17275634321)