Aerial Cooperative Jamming for Cellular-Enabled UAV Secure Communication Network: Joint Trajectory and Power Control Design

Abstract
To improve the secrecy performance of cellular-enabled unmanned aerial vehicle (UAV) communication networks, this paper proposes an aerial cooperative jamming scheme and studies its optimal design to achieve the maximum average secrecy rate. Specifically, a base station (BS) transmits confidential messages to a UAV and meanwhile another UAV performs the role of an aerial jammer by cooperatively sending jamming signals to oppose multiple suspicious eavesdroppers on the ground. As the UAVs have the advantage of the controllable mobility, the objective is to maximize the worst-case average secrecy rate by the joint optimization of the two UAVs’ trajectories and the BS’s/UAV jammer’s transmit/jamming power over a given mission period. The objective function of the formulated problem is highly non-linear regarding the optimization variables and the problem has non-convex constraints, which is, in general, difficult to achieve a globally optimal solution. Thus, we divide the original problem into four subproblems and then solve them by applying the successive convex approximation (SCA) and block coordinate descent (BCD) methods. Numerical results demonstrate that the significantly better secrecy performance can be obtained by using the proposed algorithm in comparison with benchmark schemes.
Funding Information
  • National Natural Science Foundation of China (61701064)
  • China Scholarship Council (201808510008)
  • Sichuan Science and Technology Program (2018GZ0454)