Microscopic kinetics of isothermal sintering of Fe-20 % (mаs.) Mo alloy

Abstract
Purpose of work. To investigate the features of microscopic kinetics of peritectoid transformation in Fe-Mo system alloys in an isothermal mode. Experimental part. Microscopic analysis of samples on light (Jenaphot 2000, K. Zeiss) and scanning electron (REM 106I, Selmi) microscopes, X-ray spectral microanalysis of the component’s concentrations distribution between the phases, X-ray phase analysis (Rigaku Ultima IV diffractometer). Results. Microstructure changes, phase composition and crystal lattices parameters of the phase constituents of the powder alloy during sintering at 920 °C were investigated. Variation in the phase constituents mass fraction during 7 hours of the isothermal exposure is analyzed. The formation of anomalous diffusion porosity at the beginning of the process, the nonmonotonic change in the phase constituents fraction and formation of intermediate phases with an unstable component’s concentration are the main features of the microscopic kinetics. The sintering mechanism is proposed. Scientific novelty. A local peritectoid transformation existence at the Fe/Mo interface was established by analyzing the local diffusion flows of components atoms. This transformation occurs upon isothermal supply of Mo atoms with the formation of a cooperative peritectoid structural constituents according to the α- Fe + Mo → α + μ scheme with residual Mo crystals. Formulation of the problem. This work aims to clarify the phenomenological theory of peritectoid transformation during isothermal α-Fe grains enrichment with molybdenum by studying the features of microscopic kinetics in the Fe-Mo system alloys. Practical value. Peritectoid (α + μ) with branched phase соnstituents of cooperative genesis forms a developed system of local diffusion flows of Mo atoms in α -Fe. This increases the molybdenum peritectoid transformation rate at a relatively low sintering temperature for these alloys and reduces the energy consumption in the technological process.