Transformerless Hybrid Power Filter Based on a Six-Switch Two-Leg Inverter for Improved Harmonic Compensation Performance

Abstract
One of the most important power quality issues is related to current harmonics generated by nonlinear loads such as diode and thyristor front-end rectifiers. Well-established solutions to overcome this problem, such as active power filters (APFs), have the required high power rating components as a major disadvantage. An alternative, called hybrid power filter (HPF), mixes low power rating active filters with passive filters. Unfortunately, many of these HPF topologies have, as a common disadvantage, a great number of passive components and/or transformers. Based on this fact, new concepts of HPFs, consisting of small-rated inverters and LC filters, have been introduced with wide acceptance. The advantage comes from the fact that these HPFs are connected to the grid without any matching transformer. Recently, some topologies based on dual-converter configurations have been shown to be very attractive, where the APF (or HPF) must deal with highly nonlinear loads with high values of di/dt and supplying the reactive power together with harmonic compensation. On the other hand, the drawback of dual converters is the high number of switch devices. Therefore, this paper proposes a transformerless HPF based on a new six-switch two-leg inverter with an enhanced harmonic compensation capability. Aside from presenting a reduced number of switches when compared with dual topologies, the proposed solution is capable of providing fully compensation even for loads with high harmonic content. Experimental results are presented for an HPF inverter prototype in order to demonstrate that the harmonic compensation performance meets the IEEE 519 standard.
Funding Information
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Brazil