Spinful hinge states in the higher-order topological insulators WTe2

Abstract
Higher-order topological insulators are recently discovered quantum materials exhibiting distinct topological phases with the generalized bulk-boundary correspondence. Td-WTe2 is a promising candidate to reveal topological hinge excitation in an atomically thin regime. However, with initial theories and experiments focusing on localized one-dimensional conductance only, no experimental reports exist on how the spin orientations are distributed over the helical hinges—this is critical, yet one missing puzzle. Here, we employ the magneto-optic Kerr effect to visualize the spinful characteristics of the hinge states in a few-layer Td-WTe2. By examining the spin polarization of electrons injected from WTe2 to graphene under external electric and magnetic fields, we conclude that WTe2 hosts a spinful and helical topological hinge state protected by the time-reversal symmetry. Our experiment provides a fertile diagnosis to investigate the topologically protected gapless hinge states, and may call for new theoretical studies to extend the previous spinless model.
Funding Information
  • National Research Foundation of Korea (NRF-2020M3F3A2A03082472, 2017M3D1A1040828)